skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choudhury, Sanjiban"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Tan, Jie; Toussaint, Marc; Darvish, Kourosh (Ed.)
  3. Prevalent imitation learning methods seek to produce behavior that matches or exceeds average human performance. This often prevents achieving expert-level or superhuman performance when identifying the better demonstrations to imitate is difficult. We instead assume demonstrations are of varying quality and seek to induce behavior that is unambiguously better (i.e., Pareto dominant or minimally subdominant) than all human demonstrations. Our minimum subdominance inverse optimal control training objective is primarily defined by high quality demonstrations; lower quality demonstrations, which are more easily dominated, are effectively ignored instead of degrading imitation. With increasing probability, our approach produces superhuman behavior incurring lower cost than demonstrations on the demonstrator’s unknown cost function{—}even if that cost function differs for each demonstration. We apply our approach on a computer cursor pointing task, producing behavior that is 78% superhuman, while minimizing demonstration suboptimality provides 50% superhuman behavior{—}and only 72% even after selective data cleaning. 
    more » « less